

FPIN's Clinical Inquiries

Dry Needling for Low Back Pain

Roxanne Radi, MD, MPH; Wesley Ng, MD; Raeanna Simcoe, MD; and Corey Lyon, DO, University of Colorado Family Medicine Residency, Denver, Colorado

Kristen DeSanto, MSLS, MS, RD, University of Colorado Health Sciences Library, Denver, Colorado

Clinical Question

Is dry needling an effective treatment for chronic low back pain?

Evidence-Based Answer

A comprehensive treatment program that includes dry needling may provide some benefit in decreasing pain scores and perceived disability vs. standard physical therapy (PT) and home PT in the short term. However, this improvement is small, and the clinical significance is questionable. (Strength of Recommendation: B, randomized controlled trials [RCTs].) Additional research is needed to determine the best regimens to augment dry needling.

Evidence Summary

A 2016 single-blind RCT of adult patients ($n = 58$) with discogenic radicular back pain examined the effectiveness of dry needling plus PT vs. standard PT, which included transcutaneous electrical nerve stimulation (TENS), thermal modalities, and ultrasonography.¹ All patients received 10 sessions of PT every other day. At the end of PT

sessions on even-numbered days, the dry needling group had 3- to 6-cm traditional acupuncture needles inserted into a trigger point or taut band; the needles were left in place until there was no more pain or twitching. Pain and disability were assessed using a visual analog scale (VAS; scored from 0 to 100) and the Oswestry Disability Index (scored from 1 to 50, with higher scores reflecting more notable disability) at the end of the session and two months later. There were no differences between the groups using dry needling plus PT vs. PT alone in baseline pain intensity on the VAS (79.0 vs. 74.1; $P = .12$) or Oswestry Disability Index (40.1 vs. 40.1; $P = .93$). The dry needling plus PT group had statistically lower postintervention VAS scores vs. PT alone (45.5 vs. 37.2; $P = .04$) and improved Oswestry Disability Index scores (32.7 vs. 28.5; $P = .03$), which persisted at the two-month follow-up (VAS = 42.4 vs. 25.2; $P = .008$; Oswestry Disability Index = 30.3 vs. 22.2; $P = .003$). This study was limited by the short follow-up period.

A 2017 single-blind RCT of adult patients ($n = 34$) who had chronic low back pain due to lumbar disk hernia examined the effectiveness of dry needling plus massage vs. a traditional PT program.² Both groups received treatment twice per week for a total of six sessions. Participants in the intervention group received Swedish massage, and dry needling was performed on active or latent trigger points (.4- or .6-mm needles inserted for 20 minutes, with rolling of the needle handle at 10 minutes to restimulate the area). Participants in the control group were asked to complete an at-home exercise program twice per day with a hot pack applied for 20 minutes, followed by burst TENS and constant ultrasonography during treatment. Before the intervention, the dry needling plus massage group had a baseline VAS score (0 to 10) of 2.5 vs. 2.4 for the control group. On the short-form McGill Pain Questionnaire (SF-MPQ; 0 to 45, with higher scores indicating more severe pain), the dry needling plus massage group had a total pain score of 7.1 vs. 7.8 for the control group. At the end of the three-week intervention, both

Clinical Inquiries provides answers to questions submitted by practicing family physicians to the Family Physicians Inquiries Network (FPIN). Members of the network select questions based on their relevance to family medicine. Answers are drawn from an approved set of evidence-based resources and undergo peer review. The strength of recommendations and the level of evidence for individual studies are rated using criteria developed by the Evidence-Based Medicine Working Group (<https://www.cebm.net>).

The complete database of evidence-based questions and answers is copyrighted by FPIN. If interested in submitting questions or writing answers for this series, go to <https://www.fpin.org> or email: questions@fpin.org.

This series is coordinated by John E. Delzell Jr., MD, MSPH, associate medical editor.

A collection of FPIN's Clinical Inquiries published in *AFP* is available at <https://www.aafp.org/afp/fpin>.

Author disclosure: No relevant financial relationships.

groups had significant decreases in total pain. After treatment comparisons, the dry needling plus massage group reported lower VAS scores (0.6 vs. 3.3 in the control group; $P < .05$) and lower total pain scores on the SF-MPQ (0.6 vs. 3.8 in the control group; $P < .05$). The dry needling plus massage group also had fewer trigger points (4.3 vs. 7.8 in the control group; $P < .05$) and lower fear of movement on the Tampa Scale of Kinesiophobia (rated on a 17- to 68-point scale; 37.8 vs. 45.4 in the control group; $P < .05$). No adverse effects were noted. Study limitations included smaller sample size, limited follow-up, and single-blinding.

A 2019 RCT of adults ($n = 65$) examined the effects of dry needling vs. nonthrust manipulation in patients with nonspecific low back pain.³ Both groups received two visits per week for three weeks, for a total of six visits. The intervention group received five to seven minutes per session of dry needling (i.e., 50-mm needles were inserted into paraspinal muscles bilaterally at, above, and below the spinal level of pain, and then into the peripheral lower extremity matching nerve root distribution; 22 total needles were used). This was compared with semi-standard nonthrust manipulation (a technique involving “repetitive, rhythmic, passive oscillatory movement, applied with either small or large amplitude to a symptomatic spinal level”). All patients were advised to complete a daily standardized home exercise program. There were no clinically or statistically significant differences between the groups at weeks 2, 4, or 6 in any primary or secondary outcomes. However, both groups experienced statistically significant within-group improvements from baseline to six weeks. First, the Oswestry Disability Index scores (scale = 0% to 100% disabled) improved.

In the dry needling group, the mean difference (MD) from baseline was -17.2% (95% CI, -12.3% to -22.2%); in the nonthrust manipulation group, the MD was -10.6% (95% CI, -6.9% to -14.2%). Patient-specific functional scale scores also improved. A maximum score of 10 meant the patient was able to perform at the level they could before the injury occurred. The MD in the dry needling group was 3.8 (95% CI, 2.8 to 4.7) and the MD in the nonthrust manipulation group was 2.4 (95% CI, 1.6 to 3.2). Finally, the numeric pain rating scale (1 to 10) was lower. The MD in the dry needling group was -2.5 (95% CI, -1.6 to -3.3) and the MD in the nonthrust manipulation group was -1.7 (95% CI, -0.1 to -2.4). Neither group reported statistically significant improvement in the pressure pain threshold. Adverse effects were not listed in the report. This RCT was limited by the lack of complete standardization of treatments, especially the dry needling technique, and limited follow-up.

Copyright © Family Physicians Inquiries Network. Used with permission.

Address correspondence to Roxanne Radi, MD, MPH, at roxanne.radi@dhha.org. Reprints are not available from the authors.

References

1. Mahmoudzadeh A, Rezaeian ZS, Karimi A, et al. The effect of dry needling on the radiating pain in subjects with discogenic low-back pain. *J Res Med Sci*. 2016;21:86.
2. Tüzün EH, Gıldır S, Angın E, et al. Effectiveness of dry needling versus a classical physiotherapy program in patients with chronic low-back pain. *J Phys Ther Sci*. 2017;29(9):1502-1509.
3. Griswold D, Gargano F, Learman KE. A randomized clinical trial comparing non-thrust manipulation with segmental and distal dry needling on pain, disability, and rate of recovery for patients with non-specific low back pain. *J Man Manip Ther*. 2019;27(3):141-151. ■